Call us toll-free

Polyhydroxybutyrate synthesis in transgenic flax

Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia

Approximate price

Pages:

275 Words

$19,50

Effect of expressing polyhydroxybutyrate synthesis …

Crude glycerol (CG), a by-product of biodiesel production, is an organic carbon-rich substrate with potential as feedstock for polyhydroxyalkanoate (PHA) production. PHA is a biodegradable thermoplastic synthesized by microorganisms as an intracellular granule. In this study we investigated PHA production on CG using mixed microbial consortia (MMC) and determined that the enriched MMC produced exclusively polyhydroxybutyrate (PHB) utilizing the methanol fraction. PHB synthesis appeared to be stimulated by a macronutrient deficiency. Intracellular concentrations remained relatively constant over an operational cycle, with microbial growth occurring concurrent with polymer synthesis. PHB average molecular weights ranged from 200–380 kDa, while thermal properties compared well with commercial PHB. The resulting PHB material properties and characteristics would be suitable for many commercial uses. Considering full-scale process application, it was estimated that a 38 million L (10 million gallon) per year biodiesel operation could potentially produce up to 19 metric ton (20.9 ton) of PHB per year.

08/03/2016 · Regulation of polyhydroxybutyrate synthesis in the soil ..

This study showed that a single-chain translational fusion protein comprising the three enzymes essential for polyhydroxybutyrate synthesis can be engineered which will strongly facilitate the establishment of recombinant polyhydroxybutyrate production organisms particularly requiring targeting to sub-cellular compartments such as the chloroplasts in plants.

Polyhydroxybutyrate synthesis essay - Winrows

Polyhydroxybutyrate synthesis on biodiesel …

AB - The polyhydroxybutyrate (PHB) synthase gene of the bacterium Alcaligenes eutrophus was used to construct a yeast plasmid which enabled expression of the functional synthase enzyme in Saccharomyces cerevisiae, Cells transformed with the synthase plasmid accumulated up to 0.5% of cell dry weight as PHB, with accumulation occurring in the stationary phase of batch growth. The identity of PHB in recombinant yeast cells was confirmed with 1H-NMR spectra of chloroform-extracted cell material. In addition, freeze-fracture electron microscopy revealed cytoplasmic granules exhibiting plastic deformations characteristic for PHB. GC results indicated a low background level of PHB in the wild-type strain, but intact polymer could not be detected by 1H-NMR. Formation of PHB in the recombinant strain implies the participation of native yeast enzymes in the synthesis of D-3-hydroxybutyryl-CoA (3-HB-CoA). Inhibition studies with cerulenin indicated that the fatty acid synthesis pathway is not involved in PHB precursor formation. Wild-type cell-free extracts showed D-3-HB-CoA dehydrogenase activity [150-200 nmol min-1 (mg protein)-1] and acetoacetyl-CoA thiolase activity [10-20 nmol min-1 (mg protein)-1], which together could synthesize monomer from acetyl-CoA. PHB accumulation was simultaneous with ethanol production, suggesting that PHB can act as an alternate electron sink in fermentative metabolism. We propose that PHB synthesis in recombinant yeast is catalysed by native cytoplasmic acetoacetyl-CoA thiolase, a native β-oxidation protein possessing D-3-HB-CoA dehydrogenase activity and heterologous PHB synthase.

Naturally occurring, biocompatible, and biodegradable polyhydroxybutyrate-co-hydroxyvalerate (PHBV), and synthetic, non-degrading polyhydroxyethylmethacrylate (PHEMA) membranes were prepared and their mechanical properties were studied. Their performances were compared with the interpenetrating networks (IPN) prepared by photopolymerization of HEMA in the presence of PHBV. The modulus of elasticity, failure stress and failure strain indicated that the IPNs are viscoelastic with properties closer to PHEMA but much stronger than PHEMA homopolymers. Incorporation of PHBV (7, 14 and 22% HV) affected the mechanical properties positively. Increasing the PHBV content increased the modulus of elasticity and failure stress nearly in all samples tested. PHBV (7, 14, and 22% HV, 300 mg) samples showed an approximately 17-30 fold increase in terms of modulus of elasticity and 7-10 fold increase in terms of failure stress. The scanning electron micrographs of the membranes showed that the PHEMA membranes are more porous than the PHBV membranes but the IPN structure displayed channels on the membrane surface indicating that HEMA polymerization was achieved by using the PHBV as a scaffold. With the use of the present technique, it is possible to synthesize supramolecular structures from molecules that are not compatible and miscible with each other.

Polyhydroxybutyrate synthesis on biodiesel ..

Control of continuous polyhydroxybutyrate synthesis …

N2 - The polyhydroxybutyrate (PHB) synthase gene of the bacterium Alcaligenes eutrophus was used to construct a yeast plasmid which enabled expression of the functional synthase enzyme in Saccharomyces cerevisiae, Cells transformed with the synthase plasmid accumulated up to 0.5% of cell dry weight as PHB, with accumulation occurring in the stationary phase of batch growth. The identity of PHB in recombinant yeast cells was confirmed with 1H-NMR spectra of chloroform-extracted cell material. In addition, freeze-fracture electron microscopy revealed cytoplasmic granules exhibiting plastic deformations characteristic for PHB. GC results indicated a low background level of PHB in the wild-type strain, but intact polymer could not be detected by 1H-NMR. Formation of PHB in the recombinant strain implies the participation of native yeast enzymes in the synthesis of D-3-hydroxybutyryl-CoA (3-HB-CoA). Inhibition studies with cerulenin indicated that the fatty acid synthesis pathway is not involved in PHB precursor formation. Wild-type cell-free extracts showed D-3-HB-CoA dehydrogenase activity [150-200 nmol min-1 (mg protein)-1] and acetoacetyl-CoA thiolase activity [10-20 nmol min-1 (mg protein)-1], which together could synthesize monomer from acetyl-CoA. PHB accumulation was simultaneous with ethanol production, suggesting that PHB can act as an alternate electron sink in fermentative metabolism. We propose that PHB synthesis in recombinant yeast is catalysed by native cytoplasmic acetoacetyl-CoA thiolase, a native β-oxidation protein possessing D-3-HB-CoA dehydrogenase activity and heterologous PHB synthase.

T1 - Synthesis and mechanical properties of interpenetrating networks of polyhydroxybutyrate-co-hydroxyvalerate and polyhydroxyethyl methacrylate

Impaired polyhydroxybutyrate biosynthesis from glucose in ..
Order now
  • Polyhydroxybutyrate - Wikipedia

    Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco.

  • into the polymer to produce polyhydroxybutyrate-co ..

    Synthesis and Properties of Polyurethanes Based on Synthetic Polyhydroxybutyrate ..

  • in the elongation process of PHB synthesis in ..

    Environmentally Safe Polyhydroxybutyrate Synthesis by Alcaligenes eutrophus in Pressurized Fermentor -

Order now

AlgaEurope 2017 Conference program

N2 - Naturally occurring, biocompatible, and biodegradable polyhydroxybutyrate-co-hydroxyvalerate (PHBV), and synthetic, non-degrading polyhydroxyethylmethacrylate (PHEMA) membranes were prepared and their mechanical properties were studied. Their performances were compared with the interpenetrating networks (IPN) prepared by photopolymerization of HEMA in the presence of PHBV. The modulus of elasticity, failure stress and failure strain indicated that the IPNs are viscoelastic with properties closer to PHEMA but much stronger than PHEMA homopolymers. Incorporation of PHBV (7, 14 and 22% HV) affected the mechanical properties positively. Increasing the PHBV content increased the modulus of elasticity and failure stress nearly in all samples tested. PHBV (7, 14, and 22% HV, 300 mg) samples showed an approximately 17-30 fold increase in terms of modulus of elasticity and 7-10 fold increase in terms of failure stress. The scanning electron micrographs of the membranes showed that the PHEMA membranes are more porous than the PHBV membranes but the IPN structure displayed channels on the membrane surface indicating that HEMA polymerization was achieved by using the PHBV as a scaffold. With the use of the present technique, it is possible to synthesize supramolecular structures from molecules that are not compatible and miscible with each other.

Cellulose Chemistry and Technology

AB - Naturally occurring, biocompatible, and biodegradable polyhydroxybutyrate-co-hydroxyvalerate (PHBV), and synthetic, non-degrading polyhydroxyethylmethacrylate (PHEMA) membranes were prepared and their mechanical properties were studied. Their performances were compared with the interpenetrating networks (IPN) prepared by photopolymerization of HEMA in the presence of PHBV. The modulus of elasticity, failure stress and failure strain indicated that the IPNs are viscoelastic with properties closer to PHEMA but much stronger than PHEMA homopolymers. Incorporation of PHBV (7, 14 and 22% HV) affected the mechanical properties positively. Increasing the PHBV content increased the modulus of elasticity and failure stress nearly in all samples tested. PHBV (7, 14, and 22% HV, 300 mg) samples showed an approximately 17-30 fold increase in terms of modulus of elasticity and 7-10 fold increase in terms of failure stress. The scanning electron micrographs of the membranes showed that the PHEMA membranes are more porous than the PHBV membranes but the IPN structure displayed channels on the membrane surface indicating that HEMA polymerization was achieved by using the PHBV as a scaffold. With the use of the present technique, it is possible to synthesize supramolecular structures from molecules that are not compatible and miscible with each other.

Cellulose Chemistry and Tehnology ..

The polyhydroxybutyrate (PHB) synthase gene of the bacterium Alcaligenes eutrophus was used to construct a yeast plasmid which enabled expression of the functional synthase enzyme in Saccharomyces cerevisiae, Cells transformed with the synthase plasmid accumulated up to 0.5% of cell dry weight as PHB, with accumulation occurring in the stationary phase of batch growth. The identity of PHB in recombinant yeast cells was confirmed with 1H-NMR spectra of chloroform-extracted cell material. In addition, freeze-fracture electron microscopy revealed cytoplasmic granules exhibiting plastic deformations characteristic for PHB. GC results indicated a low background level of PHB in the wild-type strain, but intact polymer could not be detected by 1H-NMR. Formation of PHB in the recombinant strain implies the participation of native yeast enzymes in the synthesis of D-3-hydroxybutyryl-CoA (3-HB-CoA). Inhibition studies with cerulenin indicated that the fatty acid synthesis pathway is not involved in PHB precursor formation. Wild-type cell-free extracts showed D-3-HB-CoA dehydrogenase activity [150-200 nmol min-1 (mg protein)-1] and acetoacetyl-CoA thiolase activity [10-20 nmol min-1 (mg protein)-1], which together could synthesize monomer from acetyl-CoA. PHB accumulation was simultaneous with ethanol production, suggesting that PHB can act as an alternate electron sink in fermentative metabolism. We propose that PHB synthesis in recombinant yeast is catalysed by native cytoplasmic acetoacetyl-CoA thiolase, a native β-oxidation protein possessing D-3-HB-CoA dehydrogenase activity and heterologous PHB synthase.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order