Call us toll-free

Starch Synthesis will be available on

Amino acid synthesis depends ..

Approximate price


275 Words


31 (i959) metabolic pools and the synthesis of macromolecules dean b

The diversity of insect coloration is in large measure because of an abundance of pigments. Combinations of pigments together with effects of light diffraction, refraction, and interference involving various anatomical structures produce the array of exotic colors familiar to insect observers. Many insects synthesize melanins, ommochromes, porphyrins, pteridines, and/or quinones. Other pigments such as flavonoids and carotenoids, although not synthesized, are often sequestered by insects from plants and contribute to coloration. Two pigment groups are notable. Ommochromes, first reported from the eyes of insects, and papilochromes, a unique group that occur in the bodies and wings of the butterfly family Papilionidae.

FIGURE 1 Structure of the protein-chitin cross-linkage in the pupal cuticle of Manduca sexta (adapted from Schaefer et al., 1987). Protein may be linked through the 1 or 3 nitrogen of the imidizole ring to the 2, 5, or 6 ring carbon of the quinone derivative, and carbon 4, or other carbons of chitin may be linked to phenoxy carbon 3 or 4 of the quinone.
Ommochromes are polymers of heterocyclic phenoxines, distributed among a variety of different insect tissues, producing yellow, red, and brown coloration. They are synthesized from tryptophan in a metabolic pathway involving kyneurenine derivatives. In the compound eye, ommochromes form the principal masking pigments that surround and isolate the individual ommatidia and thus the origin of the name. Several eye-color mutants, described in several insect species, result from the absence of enzymatic function at specific steps in the synthetic pathway. Identification of these steps in Drosophila was one of the early confirmations of A. Garrod’s one gene-one enzyme hypothesis. The ommochrome biosynthetic pathway in the coloration of M. sexta larvae is hormonally regulated.
Papiliochromes are novel white, yellow, and red pigments whose synthesis intersects the well-known metabolic pathways, the melanins and ommochromes. For butterflies of the genus Papilio, the precursors are (3 alanine, tyrosine, and tryptophan. Papiliochromes accumulate in the wing scales, and their distribution varies with the butterfly species. Recent studies on papiliochrome synthesis demonstrated that, as in the case of sclerotization, quinone methides derived from tyrosine are intermediates. The synthesis involves the non-enzymatic condensation of N-( -alanyldopamine quinone methide with L -kynurenine to produce a mixture of two diastereoisomers of papilochrome II, a white pigment. Papiliochrome II is a peptide in which the two aromatic rings are linked by a bridge between the aromatic amino group of kynurenine and the catecholamine side chain of norepinephrine derived from the quinone. Papiliochrome synthesis is regulated by the activation of ( -alanyldopamine synthase that shifts dopamine derived from tyrosine away from melanin synthesis and into papiliochrome synthesis.

The metabolic burden of creatine synthesis.

Since the birth of synthetic biology in 2000, metabolic engineering and synthetic biology research have made increasingly huge progress on high value-added natural products. The synthesis and construction of metabolic pathways as well as diverse DNA assembly technologies play a fundamental role in microbiology, biochemistry, and many other relevant fields. With the rapid development of gene synthesis and assembly technology, especially chip-based DNA synthesis technology, the price of large DNA fragment or plasmid synthesis is decreasing year by year, providing opportunities and access for synthetic biologists and metabolic engineers to more easily conduct their research. Over the last 10 years, the continuous development of high flux and automated high-throughput screening methods significantly help to improve the convenience and simplicity of the late screening of library technology, provide more beneficial tools for metabolic engineering and synthetic biology research, and play an important part in chemical synthesis, pharmacology, agricultural, and environmental fields.

Starch Synthesis | Metabolism | Metabolic Pathway

Based on Syno®2.0 and Syno®3.0 gene synthesis tools and strong long DNA assembly capability, Synbio Technologies is confident in providing professional technical support for metabolic pathway synthesis and library assembly. Specific services include metabolic pathway synthesis and customized metabolic pathway library assembly.

Turnaround Time and Price:

How to order pathway synthesis services
If you have any question, please contact us anytime for assistance in business days. Our experienced project managers will provide you professional support to ensure the success of your project.

A Custom Synthesis Company - Capot Chemical

Synbio Technologies is building up the first integrated GPS (Genotype, Phenotype and Synotype) system aimed to a quick and easy translation or reverse translation between "Genotype" and "Phenotype" by using our proprietary "Synotype" platform. The company's scientific capabilities encompass areas such as DNA engineering, DNA synthesis, genome synthesis, pathway synthesis, synthetic biology, pharmacogenomics, microbiology, translational biology and the applications of synthetic biology. Synbio Technologies' team has a proven track record regarding translating scientific breakthroughs into cost effective biological solution.

glycolysis The principal metabolic pathway responsible for
oxidation of carbohydrate (glucose) to pyruvate during cellular
gluconeogenesis A metabolic pathway responsible for the
net synthesis of carbohydrate (glucose) from amino acids, lactate,
and glycerol.
respiration The collection of metabolic pathways responsible
for the oxidation of glucose, amino acids, and fatty acids,
with the production of energy involving an electron transport
lipid A chemically diverse group of molecules that are insoluble
in water and other polar solvents.
supercooling The absence of freezing at or below the normal
freezing point of water.
metabolome A quantitative metabolite profi le associated
with a cellular process.
The chemical reactions of cells, linked together in series to form pathways, are collectively referred to as metabolism. Metabolic pathways are interdependent and exquisitely regulated for efficient extraction of energy from fuels and for synthesis of biological macro-molecules. Cellular processes produce unique chemical fingerprints or metabolite profiles, and a complete quantitative set of metabolic intermediates associated with a cellular process is referred to as the metabolome. Metabolomics is the study of changes in the metabo-lome that may arise from metabolic regulation or alteration in gene expression, or a combination of both mechanisms. Studies of metabolism and metabolomics are subject areas of biochemistry, which also includes the structural chemistry of biological molecules and the chemistry of molecular genetics.
Metabolic studies with insects have focused on the biochemical bases for the unique physiological capabilities of insects and their arthropod relatives. Early studies considered chemical content, individual chemical reactions, respiration, and metabolic rate. Much of this was discussed in Sir V. B. Wigglesworth’s The Principles of Insect Physiology that first appeared in 1939. With advances, other comprehensive reviews appeared, including D. Gilmour’s 1961 The Metabolism of Insects, the 1964 edition of Physiology of Insecta and in 1978 The Biochemistry of Insects, both edited by M. Rockstein. More recently, insect metabolism was described in several volumes of Comparative Insect Physiology Biochemistry and Pharmacology, edited by G. A. Kerkut and L. I. Gilbert (1985). A recent update is Comprehensive Molecular Insect Science, edited by L. I. Gilbert, K. Iatrou, and S. Gill (2005), but the coverage of metabolism is restricted.

Order now
  • Biosynthesis, function and metabolic engineering of …

    The metabolism of a cell consists of an elaborate network of interconnected pathways that enable the synthesis ..

  • Biosynthesis, function and metabolic engineering of plant ..

    De novo synthesis the formation of an essential molecule from simple precursor molecules

  • GenScript's gene synthesis services offer 100% sequence-verified synthetic genes

Order now

Glycogen Synthesis and Metabolism

Basal metabolic rate (BMR) is the total number of calories that your body needs to perform basic, life-sustaining functions. These basal functions include circulation, breathing, cell production, nutrient processing, protein synthesis and ion transport. You can calculate basal metabolic rate using a mathematical formula.

Shikimate is a key intermediate for the synthesis of the ..

Insects share with other invertebrates the common pathways of carbohydrate, lipid, and amino acid metabolism. Although much has been presumed based on overt similarities to more extensive studies of mammals and other higher taxa, many aspects of intermediary metabolism have been examined in a number of insects and different insect tissues. Much of intermediary metabolism, including synthesis and storage of carbohydrate and fat, takes place in the fat body.
Metabolism and utilization of the glucose disaccharide trehalose as the principal hemolymph or blood sugar is unique to insects and some other invertebrates. First described from an insect by G. R. Wyatt in pupae of the silk moth, Antheraea polyphemus, trehalose, a non-reducing sugar, occurs in many insects at variable but high levels. In lepidopteran insects, trehalose concentrations are commonly between 25 and 100 mM, levels greatly exceeding those of glucose in the blood of mammals. Blood glucose in man typically is about 5 mM, a low value for trehalose in hemolymph. With few exceptions, glucose occurs in insect hemolymph at levels less than 5 mM, and often at less than 1 mM. Trehalose serves multiple functions, as a storage carbohydrate that serves as a fuel for flight and as a cryopro-tectant, protecting insects from damage during overwintering in cold climes. The hemolymph level of trehalose plays an important role in regulating carbohydrate intake and maintaining nutritional home-ostasis. Levels of trehalose in the hemolymph are maintained by a complex interaction of nutrient intake and metabolism.
Trehalose is synthesized in the fat body from two glycolytic intermediates, glucose-1-phosphate and glucose-6-phosphate. The reactions are catalyzed by trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Sources of glucose for trehalose synthesis include dietary sucrose, glycogen, and gluconeogenesis; dietary sugar being the sole source of glucose under fed conditions. Trehalose formation from glycogen has been described in several insects including the cockroach Periplaneta americana and moth Manduca sexta during starvation. The breakdown of glycogen to glucose is due to activation of the enzyme glycogen phosphorylase and is under endocrine control by a neurohormone released from the corpora cardiaca in the brain. Induction of a “hypertrehalosemic” hormone RNA transcript in the central nervous system of the cockroach, Blaberus discoidalis, in response to starvation was recently demonstrated. Glucose synthesis, followed by trehalose formation, via gluconeogenesis, has only been reported in M. sexta and was induced when larvae were maintained on low carbohydrate diets. Starvation did not induce gluconeogenesis.
Insects obtain energy principally from aerobic respiration, but many species have some capacity for anaerobic energy metabolism when exposed to hypoxic or anoxic conditions. This is best known in aquatic insects such as midge larvae where the fermentation products may include lactate, ethanol, and acetate. The midge Chaoborus crystallinis accumulates succinate, suggesting that this species is able to use anaerobic respiration for ATP production.

Metabolic engineering of monoterpene synthesis in …

Alkalinity: The ability of a chemical solution to absorb hydrogens ions from a solution. A pH measurement above 7.0 pH. Pertaining to the acid-base relationship of any solution that has fewer hydrogen ions or more hydroxyl ions than pure water which is considered chemically neutral with a pH of 7.0
Anabolism/Anabolic: The phase of metabolism in which simple substances are synthesized into the complex materials of living tissue.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order