Call us toll-free

the ‘GABA disinhibition’ hypothesis of ..

T1 - A new version of the thalamic disinhibition hypothesis of central pain

Approximate price

Pages:

275 Words

$19,50

A new version of the thalamic disinhibition hypothesis …

Opioids inhibit release of primary afferent transmitters but it is unclear whether the converse occurs. To test the hypothesis that primary afferent transmitters influence opioid-ergic tone, we studied the functional and anatomical relationships between pituitary adenylyl cyclase-activating polypeptide (PACAP) and dynorphin 1-17 (Dyn) in spinal cord. We found that activation of the PACAP-specific receptor PAC1 (PAC1R) inhibited, whereas PAC1R blockade augmented, spinal release of Dyn. It is noteworthy that in the formalin-induced pain model PAC1R blockade (via PACAP6-38) also resulted in antinociception that was abolished by spinal κ-opioid receptor blockade. These findings indicate that Dyn release is tonically inhibited by PACAP and that blocking this inhibition, which increases the spinal release of Dyn, results in antinociception. Consistent with this conclusion, we found in the spinal dorsal horn that Dyn-immunoreactive neurons 1) expressed PAC1R and 2) were apposed by PACAP terminals. Present results, in combination with the previous demonstration that the release of spinal Dyn is tonically inhibited by opioid- and nociceptin/orphanin FQ-coupled pathways (J Pharmacol Exp Ther 298:1213-1220, 2001), indicate that spinal Dyn-ergic neurons integrate multiple inhibitory inputs, the interruption of any one of which (i.e., disinhibition) is sufficient to enhance spinal Dyn release and generate antinociception. Gaining a better understanding of the role of primary afferent neurotransmitters in negatively modulating the spinal release of Dyn and the physiological use of disinhibition to increase spinal Dyn activity could suggest novel clinically useful approaches for harnessing endogenous Dyn for pain control.

Concludes that there is no unambiguous support for disinhibition hypothesis.] Kelly, T.H.

N2 - A variety of neuropsychiatric symptoms occur in Alzheimer's disease (AD) including agitation, psychosis, depression, apathy, disinhibition, anxiety, purposeless behavior, and disorders of sleep and appetite. Neuropsychiatric symptoms have been related to cholinergic deficiency and improve after treatment with cholinomimetic agents. Cholinergic drugs are unique among psychotropic agents in exerting disease-specific and broad-spectrum effects. These observations provide the basis for the cholinergic hypothesis of the neuropsychiatric symptoms of AD, suggesting that the cholinergic deficit of AD contributes to the neuropsychiatric symptoms of AD and that cholinomimetic therapy ameliorates the behavioral disturbances accompanying AD.

A behavioral disinhibition hypothesis of interventions …

AB - Opioids inhibit release of primary afferent transmitters but it is unclear whether the converse occurs. To test the hypothesis that primary afferent transmitters influence opioid-ergic tone, we studied the functional and anatomical relationships between pituitary adenylyl cyclase-activating polypeptide (PACAP) and dynorphin 1-17 (Dyn) in spinal cord. We found that activation of the PACAP-specific receptor PAC1 (PAC1R) inhibited, whereas PAC1R blockade augmented, spinal release of Dyn. It is noteworthy that in the formalin-induced pain model PAC1R blockade (via PACAP6-38) also resulted in antinociception that was abolished by spinal κ-opioid receptor blockade. These findings indicate that Dyn release is tonically inhibited by PACAP and that blocking this inhibition, which increases the spinal release of Dyn, results in antinociception. Consistent with this conclusion, we found in the spinal dorsal horn that Dyn-immunoreactive neurons 1) expressed PAC1R and 2) were apposed by PACAP terminals. Present results, in combination with the previous demonstration that the release of spinal Dyn is tonically inhibited by opioid- and nociceptin/orphanin FQ-coupled pathways (J Pharmacol Exp Ther 298:1213-1220, 2001), indicate that spinal Dyn-ergic neurons integrate multiple inhibitory inputs, the interruption of any one of which (i.e., disinhibition) is sufficient to enhance spinal Dyn release and generate antinociception. Gaining a better understanding of the role of primary afferent neurotransmitters in negatively modulating the spinal release of Dyn and the physiological use of disinhibition to increase spinal Dyn activity could suggest novel clinically useful approaches for harnessing endogenous Dyn for pain control.

AB - A variety of neuropsychiatric symptoms occur in Alzheimer's disease (AD) including agitation, psychosis, depression, apathy, disinhibition, anxiety, purposeless behavior, and disorders of sleep and appetite. Neuropsychiatric symptoms have been related to cholinergic deficiency and improve after treatment with cholinomimetic agents. Cholinergic drugs are unique among psychotropic agents in exerting disease-specific and broad-spectrum effects. These observations provide the basis for the cholinergic hypothesis of the neuropsychiatric symptoms of AD, suggesting that the cholinergic deficit of AD contributes to the neuropsychiatric symptoms of AD and that cholinomimetic therapy ameliorates the behavioral disturbances accompanying AD.

PayPerView: Alcohol and Disinhibition - Karger Publishers

N2 - Opioids inhibit release of primary afferent transmitters but it is unclear whether the converse occurs. To test the hypothesis that primary afferent transmitters influence opioid-ergic tone, we studied the functional and anatomical relationships between pituitary adenylyl cyclase-activating polypeptide (PACAP) and dynorphin 1-17 (Dyn) in spinal cord. We found that activation of the PACAP-specific receptor PAC1 (PAC1R) inhibited, whereas PAC1R blockade augmented, spinal release of Dyn. It is noteworthy that in the formalin-induced pain model PAC1R blockade (via PACAP6-38) also resulted in antinociception that was abolished by spinal κ-opioid receptor blockade. These findings indicate that Dyn release is tonically inhibited by PACAP and that blocking this inhibition, which increases the spinal release of Dyn, results in antinociception. Consistent with this conclusion, we found in the spinal dorsal horn that Dyn-immunoreactive neurons 1) expressed PAC1R and 2) were apposed by PACAP terminals. Present results, in combination with the previous demonstration that the release of spinal Dyn is tonically inhibited by opioid- and nociceptin/orphanin FQ-coupled pathways (J Pharmacol Exp Ther 298:1213-1220, 2001), indicate that spinal Dyn-ergic neurons integrate multiple inhibitory inputs, the interruption of any one of which (i.e., disinhibition) is sufficient to enhance spinal Dyn release and generate antinociception. Gaining a better understanding of the role of primary afferent neurotransmitters in negatively modulating the spinal release of Dyn and the physiological use of disinhibition to increase spinal Dyn activity could suggest novel clinically useful approaches for harnessing endogenous Dyn for pain control.

A variety of neuropsychiatric symptoms occur in Alzheimer's disease (AD) including agitation, psychosis, depression, apathy, disinhibition, anxiety, purposeless behavior, and disorders of sleep and appetite. Neuropsychiatric symptoms have been related to cholinergic deficiency and improve after treatment with cholinomimetic agents. Cholinergic drugs are unique among psychotropic agents in exerting disease-specific and broad-spectrum effects. These observations provide the basis for the cholinergic hypothesis of the neuropsychiatric symptoms of AD, suggesting that the cholinergic deficit of AD contributes to the neuropsychiatric symptoms of AD and that cholinomimetic therapy ameliorates the behavioral disturbances accompanying AD.

Order now
  • indirect process of ‘GABA disinhibition’ — suppression of ..

    [This review provides an evaluation of the disinhibition hypothesis (as well as arousal/'time out' hypotheses).

  • disinhibition theory - oi - OUP

    This review investigates research evaluating the disinhibition hypothesis

  • Online disinhibition effect - Wikipedia

    Descending modulation of pain: the GABA disinhibition hypothesis of ..

Order now

Alcohol and Disinhibition | Request PDF

N2 - The ventrolateral preoptic area of the hypothalamus (VLPO) contains a population of sleep-active neurons and is hypothesized to be an important part of the somnogenic process. Adenosine (AD) is an endogenous sleep-promoting factor and may play an important role in promoting natural sleep. We hypothesize that AD may promote sleep, in part, by activating the VLPO sleep-active neurons. Although, in the CNS, AD is generally regarded as an inhibitory neuromodulator, it is possible for AD to be directly excitatory via A2 receptors or indirectly via disinhibition. In order to test the hypotheses that AD can excite VLPO neurons we made intracellular recordings from the VLPO in vitro and examined the effects of AD on VLPO neural activity. Whole cell patch-clamp recordings were obtained from rat brain slices and drugs were bath applied. VLPO neurons were electrophysiologically heterogeneous. Depolarizing current steps elicited rhythmic firing (25 of 57), spike frequency adaptation or accommodation (24 of 57), or an unusual burst firing response (eight of 57). Spontaneous synaptic activity was pronounced in most recorded neurons and consisted of either fast excitatory post-synaptic potentials/currents (EPSP/C's) and/or fast inhibitory post-synaptic potentials/currents (IPSP/C's). The IPSC's were fully blocked by 30 μM bicuculline suggesting they are GABA A-mediated events, and the EPSC's were blocked by 40 μM DNQX suggesting they are mediated by the AMPA subtype of glutamate receptor (five of five). AD (20-100 μM) reduced the frequency of spontaneous IPSC's in 11 of 17 VLPO neurons (28-100%; mean reduction=63%) without significant effects on resting membrane potential. IPSC was unaffected in five neurons and one neuron displayed increases in spontaneous IPSC's. In contrast, AD decreased EPSC frequency in seven cells (36-73%; mean=59%), increased frequency in five cells (30-236%; mean 83%) and had no effect in six cells. AD application increased the firing rate in two of four cells tested. These data are consistent with the hypothesis that one mechanism which AD may promote sleep is by blocking inhibitory inputs on VLPO sleep-active neurons.

Disinhibition theory - Oxford Reference

The ventrolateral preoptic area of the hypothalamus (VLPO) contains a population of sleep-active neurons and is hypothesized to be an important part of the somnogenic process. Adenosine (AD) is an endogenous sleep-promoting factor and may play an important role in promoting natural sleep. We hypothesize that AD may promote sleep, in part, by activating the VLPO sleep-active neurons. Although, in the CNS, AD is generally regarded as an inhibitory neuromodulator, it is possible for AD to be directly excitatory via A2 receptors or indirectly via disinhibition. In order to test the hypotheses that AD can excite VLPO neurons we made intracellular recordings from the VLPO in vitro and examined the effects of AD on VLPO neural activity. Whole cell patch-clamp recordings were obtained from rat brain slices and drugs were bath applied. VLPO neurons were electrophysiologically heterogeneous. Depolarizing current steps elicited rhythmic firing (25 of 57), spike frequency adaptation or accommodation (24 of 57), or an unusual burst firing response (eight of 57). Spontaneous synaptic activity was pronounced in most recorded neurons and consisted of either fast excitatory post-synaptic potentials/currents (EPSP/C's) and/or fast inhibitory post-synaptic potentials/currents (IPSP/C's). The IPSC's were fully blocked by 30 μM bicuculline suggesting they are GABA A-mediated events, and the EPSC's were blocked by 40 μM DNQX suggesting they are mediated by the AMPA subtype of glutamate receptor (five of five). AD (20-100 μM) reduced the frequency of spontaneous IPSC's in 11 of 17 VLPO neurons (28-100%; mean reduction=63%) without significant effects on resting membrane potential. IPSC was unaffected in five neurons and one neuron displayed increases in spontaneous IPSC's. In contrast, AD decreased EPSC frequency in seven cells (36-73%; mean=59%), increased frequency in five cells (30-236%; mean 83%) and had no effect in six cells. AD application increased the firing rate in two of four cells tested. These data are consistent with the hypothesis that one mechanism which AD may promote sleep is by blocking inhibitory inputs on VLPO sleep-active neurons.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order