Call us toll-free

725. Benzo[a]pyrene (WHO Food Additives Series 28)

T1 - Fidelity of translesional synthesis past benzo[a]pyrene diol epoxide- 2'-deoxyguanosine DNA adducts

Approximate price

Pages:

275 Words

$19,50

BENZO(a)PYRENE First draft prepared by Dr J.C

One-electron oxidation plays an important role in the metabolism of many substrates and their covalent binding to macromolecules. This mechanism of activation can be demonstrated by elucidation of the structure of DNA adducts. In this paper, we report the synthesis of adducts by anodic oxidation of benzo[a]pyrene (BP) in the presence of deoxyguanosine (dG) or guanosine (G). By using 1H and two-dimensional NMR spectroscopy as well as fast atom bombardment and collisionally activated decomposition (CAD) mass spectrometry, adducts were identified as BP bound at C-6-C-8 of guanine (Gua), dG, and G and to N-7 of Gua. Loss of deoxyribose from the N-7 adduct was anticipated, but it was unexpectedly found that about 30% of the C-8 adduct with dG lost the deoxyribose moiety. The C-8 adduct of G almost entirely retained the ribose moiety. These compounds were used as markers for high-pressure liquid chromatography (HPLC) to identify adducts formed in the horseradish peroxidase catalyzed binding of BP to DNA. By use of HPLC in two solvent systems, adducts were identified in the supernatant fraction obtained after ethanol precipitation of the DNA and in an enzymatic digest of the DNA. The supernatant, containing adducts lost by depurination, afforded 95% of the N-7 adduct and about half of the C-8 adduct. The major adduct identified in the DNA digest was the C-8 of dG. The structure of the N-7 adduct in the supernatant was confirmed by CAD mass spectrometry. These results demonstrate that horseradish peroxidase catalyzes binding of BP to DNA by one-electron oxidation.

Embryotoxicity of benzo[a]pyrene and some of its synthetic derivatives in Swiss mice.

C-6, followed by C-1 and C-3.AB - Radical cations of benzo[a]pyrene (BP) and 6-substituted derivatives were synthesized by two methods: reaction of the hydrocarbon with I2 and AgClO4 in benzene, and reaction of the hydrocarbon with NOBF4 in CH3CN/CH2Cl2.

Larsen, Institute of Toxicology, National Food Agency of Denmark

Prostaglandin endoperoxide synthetase and the activation of benzo[a]pyrene to reactive metabolites  in vivo in guinea pigs.

T1 - Synthesis and identification of benzo[a]pyrene-guanine nucleoside adducts formed by electrochemical oxidation and by horseradish peroxidase catalyzed reaction of benzo[a]pyrene with DNA

N2 - One-electron oxidation plays an important role in the metabolism of many substrates and their covalent binding to macromolecules. This mechanism of activation can be demonstrated by elucidation of the structure of DNA adducts. In this paper, we report the synthesis of adducts by anodic oxidation of benzo[a]pyrene (BP) in the presence of deoxyguanosine (dG) or guanosine (G). By using 1H and two-dimensional NMR spectroscopy as well as fast atom bombardment and collisionally activated decomposition (CAD) mass spectrometry, adducts were identified as BP bound at C-6-C-8 of guanine (Gua), dG, and G and to N-7 of Gua. Loss of deoxyribose from the N-7 adduct was anticipated, but it was unexpectedly found that about 30% of the C-8 adduct with dG lost the deoxyribose moiety. The C-8 adduct of G almost entirely retained the ribose moiety. These compounds were used as markers for high-pressure liquid chromatography (HPLC) to identify adducts formed in the horseradish peroxidase catalyzed binding of BP to DNA. By use of HPLC in two solvent systems, adducts were identified in the supernatant fraction obtained after ethanol precipitation of the DNA and in an enzymatic digest of the DNA. The supernatant, containing adducts lost by depurination, afforded 95% of the N-7 adduct and about half of the C-8 adduct. The major adduct identified in the DNA digest was the C-8 of dG. The structure of the N-7 adduct in the supernatant was confirmed by CAD mass spectrometry. These results demonstrate that horseradish peroxidase catalyzes binding of BP to DNA by one-electron oxidation.

Benzidine is prepared in a two step process from nitrobenzene

Carcinogenic activity of benzo[a]pyrene and some of its synthetic derivatives by direct injection into the mouse fetus.

AB - One-electron oxidation plays an important role in the metabolism of many substrates and their covalent binding to macromolecules. This mechanism of activation can be demonstrated by elucidation of the structure of DNA adducts. In this paper, we report the synthesis of adducts by anodic oxidation of benzo[a]pyrene (BP) in the presence of deoxyguanosine (dG) or guanosine (G). By using 1H and two-dimensional NMR spectroscopy as well as fast atom bombardment and collisionally activated decomposition (CAD) mass spectrometry, adducts were identified as BP bound at C-6-C-8 of guanine (Gua), dG, and G and to N-7 of Gua. Loss of deoxyribose from the N-7 adduct was anticipated, but it was unexpectedly found that about 30% of the C-8 adduct with dG lost the deoxyribose moiety. The C-8 adduct of G almost entirely retained the ribose moiety. These compounds were used as markers for high-pressure liquid chromatography (HPLC) to identify adducts formed in the horseradish peroxidase catalyzed binding of BP to DNA. By use of HPLC in two solvent systems, adducts were identified in the supernatant fraction obtained after ethanol precipitation of the DNA and in an enzymatic digest of the DNA. The supernatant, containing adducts lost by depurination, afforded 95% of the N-7 adduct and about half of the C-8 adduct. The major adduct identified in the DNA digest was the C-8 of dG. The structure of the N-7 adduct in the supernatant was confirmed by CAD mass spectrometry. These results demonstrate that horseradish peroxidase catalyzes binding of BP to DNA by one-electron oxidation.

Radical cations of benzo[a]pyrene and 6-substituted derivatives: Synthesis and reaction with nucleophiles
Order now
  • Benzo(a)Pyrene Plate Assay Kit | Polysciences, Inc.

    Benzo(a)pyrene - Wikipedia

  • CAS No. 50-00-0 | Sigma-Aldrich

    Benzo[a]pyrene | Sigma-Aldrich

  • Search results for 50-00-0 at Sigma-Aldrich

    Benzidine - Wikipedia

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order